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ABSTRACT

Mining dense subgraphs from a large graph is a fundamental graph
mining task and can be widely applied in a variety of application
domains such as network science, biology, graph database, web
mining, graph compression, and micro-blogging systems. Here a
dense subgraph is defined as a subgraph with high density (#.edge
/ #.node). Existing studies of this problem either focus on finding
the densest subgraph or identifying an optimal clique-like dense
subgraph, and they adopt a simple greedy approach to find the top-
k dense subgraphs. However, their identified subgraphs cannot be
used to represent the dense regions of the graph. Intuitively, to
represent a dense region, the subgraph identified should be the sub-
graph with highest density in its local region in the graph. However,
it is non-trivial to formally model a locally densest subgraph. In this
paper, we aim to discover top-k such representative locally densest
subgraphs of a graph. We provide an elegant parameter-free defini-
tion of a locally densest subgraph. The definition not only fits well
with the intuition, but is also associated with several nice structural
properties. We show that the set of locally densest subgraphs in
a graph can be computed in polynomial time. We further propose
three novel pruning strategies to largely reduce the search space
of the algorithm. In our experiments, we use several real datasets
with various graph properties to evaluate the effectiveness of our
model using four quality measures and a case study. We also test
our algorithms on several real web-scale graphs, one of which con-
tains 118.14 million nodes and 1.02 billion edges, to demonstrate
the high efficiency of the proposed algorithms.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph Algorithms; H.2.8 [Database Ap-
plications]: Data Mining
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1. INTRODUCTION

Mining dense subgraphs from a large graph is a fundamental
graph mining task which has been widely used in a variety of
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Figure 1: Part of the Coauthor Network

application domains [28]]. For example, in the network science do-
main, dense subgraphs represent cohesive groups or communities
in a network. There are several community detection algorithms
that are based on dense subgraphs [20,|14]. In the biology domain,
the dense subgraph mining problem has been leveraged to iden-
tify regulatory motifs in genomic DNA [21]] and to find complex
patterns in a gene annotation graph [31]. In the graph database
domain, algorithms for dense subgraphs discovery play an impor-
tant role for creating elegant index structures to process reachability
and distance queries efficiently [17, |26]. In the web mining do-
main, dense subgraph mining techniques are applied to link spam
detection based on an interesting observation that dense subgraphs
typically correspond to link spam farms [23|]. In addition, dense
subgraph mining has also been used for graph compression [[11]]
and identifying stories in micro-blogging systems [4].

Motivation. The dense subgraph mining problem aims at identify-
ing the subgraphs with high density (i.e., #.edge / #.node) [25] 6|
13, [7]] from a large graph. Existing studies of this problem either
focus on finding the densest subgraph (the subgraph with the high-
est density) 25 (6] or identifying an optimal clique-like dense sub-
graph (e.g., optimal quasi-clique proposed in [37]). To find top-k
dense subgraphs, a simple greedy procedure, as suggested in [37],
is used, which iteratively invokes the same algorithm k times in
the residual graph after deleting the identified dense subgraphs in
the previous iterations. The major drawback of these methods is
that their results cannot be used to represent the dense regions of
the graph. If the graph contains a large dense region, the top-k
dense subgraphs identified by the above approaches may all be-
long to the same dense region, and other local dense regions may
be neglected. For instance, Fig. [I] shows part of the collaboration
network in the Coauthor dataset (http://arnetminer.org/), which in-
cludes two subgraphs G'r and Gy in two research areas Informa-
tion Retrieval (IR) and Bayesian Networks (BN) respectively. If we
use the greedy procedure to find the top-2 dense subgraphs based
on either the densest subgraph model [25]] or the optimal quasi-
clique model [37]], the result will be G}; and G|g. Intuitively, the
two dense subgraphs cannot fully reflect the top-2 representative
dense regions of the graph, because Gig is located in the same



dense region as Gi. Instead, the more intuitive top-2 representa-
tive dense subgraphs should be G}z and Ggy, which represent the
densest communities in the two research areas IR and BN respec-
tively. Motivated by this, in this paper, we propose a novel dense
subgraph model, called the locally densest subgraph (LDS) model,
which identifies the representative dense subgraphs each of which
represents a dense region of the graph.

Our Model. The intuition of our LDS model is that a representa-
tive dense subgraph should be a subgraph with the highest density
in its local region in the graph. Nevertheless, to formally define an
LDS is non-trivial. A naive definition is to ensure that an LDS is
not contained in a denser subgraph. Consider the graph in Fig. [T]
Based on the naive definition, subgraph Ggy is not an LDS since
it is contained in a denser subgraph G. The reason to exclude Ggy
by the naive definition is that although the graph G is denser than
GEn, it is not compact, since the two subgraphs G\r and Gy of G
are very loosely connected. To address this problem, we introduce
the concept of p-compact graph, which is a connected graph such
that removing any subset S of nodes from the graph will result in
removing at least p x |S| edges in the graph. Clearly, a p-compact
graph has a density of at least p and each node in it has a degree
of at least [p]. Based on the concept of a p-compact graph, we
define LDS as a maximal p-compact subgraph with density equal-
ing p. Here, by maximal, we mean that it is not contained in a
larger p-compact subgraph. Based on such a definition, in Fig. [I]
subgraph Ggy with density 2 is an LDS since it is a maximal 2-
compact subgraph. Subgraph G\r with density 35/8 is not an LDS
because it is not 35/8-compact. Subgraph G|z with density 13/6 is
not an LDS because it is contained in a larger 13/6-compact sub-
graph Gr. Note that the LDS model does not rely on the parameter
p, since it is determined by the density of the subgraph itself.

Advantages of our Model. To the best of our knowledge, there is
no similar definition of LDS in the literature. The main advantages
of the LDS model are four-fold: (1) The LDS model is parameter-
free. (2) An LDS with density p does not contain a subgraph with
density larger than p, and it is not contained in any p’-compact sub-
graph with p’ > p. Therefore, it fits well with the locally densest
property. (3) All the LDSes in a graph are pairwise disjoint. As a
result, one can use our LDS model to identify all the non-overlaping
dense regions of a graph. (4) All the LDSes in a graph can be ex-
actly computed in polynomial time; and they have a lot of good
properties, based on which very effective pruning techniques can
be designed to enable the algorithm to handle web-scale graphs.

Contributions. The main contributions of this paper are as follows:

(1) An elegant representative dense subgraph model. We introduce
a new model, LDS, to identify the representative dense subgraphs
of a graph. LDS has several nice structural properties, including
locally densest, compact/cohesive, and pairwise disjoint.

(2) A polynomial algorithm with highly effective pruning strate-
gies. We show that the exact top-k LDSes of a graph can be com-
puted in polynomial time. We also propose three non-trivial prun-
ing techniques to largely speedup the algorithm. With these tech-
niques, the algorithm is able to handle web-scale graphs.

(3) Extensive experiments. In our experiments, we evaluate the ef-

fectiveness of our LDS model using four quality measures on real
graphs with different graph properties. We perform a case study
using the Coauthor network to demonstrate that our model can in-
deed find the representative dense subgraphs of a graph. We also
test our algorithms on real web-scale graphs, one of which con-
tains 118.14 million nodes and 1.02 billion edges, to demonstrate
the high efficiency of the proposed algorithms.
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Algorithm 1 Densest(graph G)

1: low < 0; high + |E(GQ)|; g < 0;
while high — low > 1/|V(G)|? do
mid < (high + low)/2;
g’ « TryDensity(G, mid);
if g’ # (0 then { g < g’; low <+ mid;} else high <+ mid;
return g;
. Procedure TryDensity(graph G, density p)
PG~ G
: Assign a weight 1 for every edge in G';
10: Add a source node s and a sink node ¢ in G”;
11: Addedge (s, v) in G’ with weight | E(G)| forevery v € V(G’) \ {s,t};
12: Add edge (v, t) in G’ with weight |E(G)| + 2 X p — d(v, G) for every
v e V(G)\ {s, t};
13: Compute the minimum s-¢ cut, denoted by S, T, in G';
14: return G[S \ {s}];

RIS AN A

QOutline. In the rest of the paper, Section [2] presents the prelimi-
naries. Section [3lintroduces our LDS model. Section ] shows the
algorithm to identify the LDSes and explores three novel pruning
techniques to speedup the algorithm. Section[5]evaluates our model
and algorithms using extensive experiments. Section [f]reviews the
related work and Section[7]concludes the paper.

2. PRELIMINARIES

LetG = (V(G), E(QG)) be an undirected graph withn = |V (G)|
nodes and m = |E(G)| edges. For each node u € V(G), we
denote the neighbor set of u in G by N(u,G), i.e., N(u,G) =
{v|(u,v) € E(G)}. Denote by d(u,G) the degree of node w in
G. Wereferto g = (V(g), E(g)) as an induced subgraph of G if
and only if V(g) C V(G) and E(g) is the induced edge set, i.e.,
E(g) = {(u,v)lu,v € V(g),(u,v) € E(G)}. Conversely, we
refer to G as a supergraph of g. We use G[S] to denote the induced
subgraph of G induced by node set S C V(G). When the con-
text is obvious, we shall call an induced subgraph a subgraph for
brevity. We also use the lowercase letter g to denote a subgraph and
use the capital letter G to denote a general graph or a supergraph.
A connected component of GG is a maximal connected subgraph of
G. Following the classic graph density definition [25[|6} 13| [7]], the
density of a graph G, denoted by density(G), is defined as:

|E(G)]
V(G)|

Densest Subgraph. Based on the definition of density, the dens-
est subgraph problem is to find the subgraph g of G such that
density(g) is maximized. Note that the densest subgraph of a graph
may not be unique, because there may be several densest subgraphs
with the same density. We refer to the maximal densest subgraph as
the largest subgraph with maximum density. The densest subgraph
component is a connected component of the maximal densest sub-
graph. It is well known that Goldberg’s parametric flow algorithm
[25]] can find the maximal densest subgraph in polynomial time by
invoking O(log n) max-flow computations. For completeness, we
depict Goldberg’s algorithm in Algorithm[T} Later, we will invoke
a subroutine of Goldberg’s algorithm in our algorithm.

(€]

density(G) =

The general idea of Goldberg’s algorithm is as follows: the al-
gorithm uses a binary search procedure to find the optimal density
(lines 2-5). In each step of the procedure, the algorithm guesses a
density p in a binary search manner, and tries to find a subgraph
g with density larger than p (lines 7-14). Such a subgraph can be
identified by computing the minimum s - ¢ cut in a carefully con-
structed graph G’ (lines 8-12). The binary search procedure can
terminate in O(log n) iterations [25]]. The detailed description and
correctness analysis of Goldberg’s algorithm can be found in [25].
Based on Goldberg’s results in [25]], the following two lemmas can
be immediately obtained:



Lemma 2.1: For any two subgraphs g and g’ of G, if density(g) #
density(g'), then |density(g) — density(¢')| > 1/|V(G)|>. o

Lemma 2.2: The procedure TryDenS|ty in Algorithm [I| with pa—
rameters G and p—1/|V (G)|?, i.e., TryDensity(G, p—1/|V (G)|?),
maximizes |E(g)|— p|V (g)| over all subgraphs g of G, and returns
the largest subgraph g in G with maximum |E(g)| — p|V (g)|. O

Core Number. Next, we introduce r-core and core number, which
are used in our problem analysis as well as our pruning techniques.

Definition 2.1: (r-core and core number [34]) An r-core sub-
graph g of graph G is a subgraph of G such that for any v € V (g),
d(v, g) > r. The r-core of G is the maximal r-core subgraph of G.
For any v € V(QG), the core number of v, denoted by core(v, G),
is the largest  such that v is contained in the r-core of G. m|

The r-core model is a well known cohesive subgraph model
which is widely used in social network analysis and graph min-
ing tasks [9, |34, |15} [29]. Note that the r-core of a graph G with
largest  may not be the subgraph with the highest density.

3. LOCALLY DENSEST SUBGRAPH

Densest subgraph computation is widely used in many graph
mining tasks (e.g., [21} |32} {17} 4} [7} |6]). However, in many ap-
plications such as community detection [20,|14], finding one dense
subgraph is usually not sufficient. Instead, top-k subgraphs to rep-
resent different dense regions of the graph are required.

Greed is Not Good. To find top-k dense subgraphs, we can adopt a
straightforward greedy approach suggested in [[37], which finds the
densest subgraph [25] (or the optimal quasi-clique [37]]) at a time,
removes it from the graph, and repeats this procedure for k times.
Nevertheless, such a greedy approach has several drawbacks: (1)
The top-k results may not fully reflect the top-£ densest regions
of a graph. If the graph contains a very large dense region, sub-
graphs in other dense regions may have low chance of appearing in
the top-k results. (2) A subgraph returned by the greedy approach
can be partial and subsumed by a better subgraph. This makes it
hard to characterize each result. (3) Such a greedy approach does
not provide a formal definition of a result. A formal definition is
important for graph mining tasks, because without a formal defini-
tion, it is not clear how to analyze each result. For the subgraphs
identified by the greedy approach, except the density information,
it is very hard to find other structural properties of each subgraph.
Dense or Compact? In order to compute representative dense sub-
graphs and avoid an identified subgraph being subsumed by a bet-
ter subgraph, each identified subgraph should be densest in its local
region. A straightforward way to define such a locally densest sub-
graph is to ensure that each identified subgraph is not contained in
a denser subgraph. However, such a definition is not good because
the denser subgraph may not be compact. To demonstrate this, let
us consider the graph in Fig.|1} Intuitively, subgraph Ggy with den-
sity 2 should be a locally densest subgraph. However, based on the
above definition, it is excluded from the results because it is con-
tained in a denser subgraph G with density 43/13. The reason to
exclude Ggy is that the denser subgraph G is not compact since the
two subgraphs Gr and Ggn of G are very loosely connected. To
address this problem, below, we first define a p-compact subgraph,
which is used to model a locally densest subgraph.

Definition 3.1: (p-compact) A graph G is p-compact if and only
if G is connected, and removing any subset of nodes S C V(G)
will result in the removal of at least p x |.S| edges in G, where p is
a nonnegative real number. m|

The intuition of Definiton is that a graph is compact if any
subset of nodes is highly connected to others in the graph. By
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Definiton [3.1] we can obtain that if a graph G is p-compact, then
every node in G has degree at least [p] and thus it is a [p]-core
subgraph. Furthermore, a p-compact graph G has density at least
p. For any p’ > p, a p’-compact graph is also a p-compact graph.

Definition 3.2: (Maximal p-compact Subgraph). A p-compact
subgraph g of G is a maximal p- compact subgraph of G if and
only 1f there does not exist a supergraph g’ of g (¢’ # ¢) in G such
that ¢’ is p-compact.

Definition of LDS. Based on Definiton[3.2] we can formally define
a locally densest subgraph (LDS) as follows:

Definition 3.3: (Locally Densest Subgraph) A subgraph g of G is
a locally densest subgraph (LDS) of G if and only if g is a maximal
density(g)-compact subgraph in G. a

Definiton[3.3]is parameter-free. By Definiton[3.3] we can obtain
that (1) an LDS itself is compact, and (2) an LDS is not contained
in a better subgraph that is more compact than itself. Note that no
graph g can be p-compact with p > density(g). The following
example illustrates the definition of LDS.

Example 3.1: Consider the graph shown in Fig.[T} Subgraph Gir
with density 35/8 is 4-compact, and it is also a maximal 4-compact
subgraph. However, G|r is not an LDS because it is not a maxi-
mal 35/8-compact subgraph. Subgraph Gz with density 13/6 is
a 13/6-compact subgraph. However, G|g is not an LDS because it
is contained in a better subgraph Gr which is 4-compact (and thus
is 13/6-compact). Gz with density 4.5 is an LDS because it is a
maximal 4.5-compact subgraph, and Ggy with density 2 is also an
LDS because it it is a maximal 2-compact subgraph. o

Structural Properties of LDS. LDS has many useful properties.
Below, we show some structural properties of LDS. In the next
section, we will introduce more properties of LDS based on which
efficient algorithm and pruning techniques can be developed.

The following lemma shows that any subgraph of an LDS cannot
be denser than the LDS itself, and any supergraph of an LDS cannot
be more compact than the LDS itself. This result indicates that an
LDS is indeed a locally densest subgraph.

Lemma 3.1: (Locally Densest Property) For any subgraph g' of
an LDS g in G, density(g') < density(g); For any supergraph g’
of an LDS g in G, g' is not p-compact for any p > density(g). O

Proof Sketch: The latter can be directly obtained from Defini-
ton Now we prove the former. Suppose to the contrary that
there exits a subgraph g’ of g with density(g’) > density(g). If we
remove node set S = V(g)\ V(g’) from g, the number of edges re-
moved is |E(g)| — |E(g")| = density(g) x |V (g)| — density(g") x
[V (g')| < density(g) x ([V(g)] = [V(g')]) = density(g) x |S].
This contradicts the condition that g is density(g)-compact. a

Actually, we can prove that any connected subgraph of G that
satisfies the locally densest property in Lemma is an LDS.
Therefore, Lemma [3.I] can provide an alternative definition of an
LDS. Next, we show that an LDS g is also a cohesive subgraph,
because it is more cohesive than an r-core for any r < density(g).

Lemma 3.2: (Cohesive Property) An LDS g in graph G is a
[density(g)|-core subgraph of G. O

Proof Sketch: Since g is density(g)-compact, the minimum degree
of the nodes in g is no less than [density(g)]. As a result, g is a
[density(g)]-core subgraph. a

Another useful property of the LDS model is that all the LDSes
in a graph G are pairwise disjoint. As a result, the number of LDSes
of a graph @ is bounded by and usually much smaller than |V (G)|.



Based on such a property, the LDS model can be used to identify
all the non-overlapping dense regions of a graph.

Lemma 3.3: (Disjoint Property) Suppose that g and g’ are two
LDSes in G, then we have V (g) NV (¢") = 0. O

Proof Sketch: Without loss of generality, we assume that density(g)
> density(g’). According to Definiton and Lemma we
have ¢ ¢ ¢'. Suppose to the contrary that V(g) "V (g') # 0.
Since ¢’ is an LDS, ¢’ is a maximal density(g’)-compact subgraph.
Let g be a subgraph induced by V (g) |V (¢’). It is easy to show
that g is density(g’)-compact, which contradicts the condition that
g’ is the maximal density(g’)-compact subgraph in G. m|

Based on the above properties of LDS, our model can be used
to identify all the dense regions of a graph. Nevertheless, many
real-world graph mining applications (e.g., community detection)
typically require to find the top-k dense regions of a graph. In this
paper, we mainly focus on finding the top-k LDSes with largest
density from a graph, albeit our proposed techniques can also be
extended to find all LDSes. We formulate our problem as follows.

Problem Statement. Given a graph G and an integer k, the LDS
discovery problem is to compute the top-k LDSes with largest den-
sity in graph G.

4. TOP-x LDS DISCOVERY

In this section, we first present a basic algorithm that can solve
the LDS discovery problem in polynomial time, and then we im-
prove the algorithm by proposing several nontrivial pruning tech-
niques to identify the top-k LDSes efficiently.

4.1 A Polynomial Algorithm

To compute all LDSes, we first show the following two lemmas.

Lemma 4.1: Any densest subgraph component of graph G is an
LDS in G. a

Proof Sketch: Let g be a densest subgraph component of G. We
show that g is an LDS in G. First, we claim that g is density(g)-
compact. This can be proved by contradiction. Consider the case
of deleting any subset .S of nodes from g. Assume that the deletion
of S results in removing less than density(g) x |S| edges, then it
can be easily derived that after deleting .S from V' (g), the density
of the residual graph is larger than density(g). This contradicts the
condition that g is a densest subgraph component of G. Second,
since g is a densest subgraph component of GG, no supergraph of
g in G has density > density(g). Hence, there does not exist a
supergraph of ¢ in G that is density(g)-compact. O

By Lemma4.1} we can conclude that any densest subgraph com-
ponent of the graph G, denoted by g, is the top-1 LDS in G. More-
over, we can prove that after deleting V' (g) from V(G), all the
other LDSes in the original G are still LDSes in the residual graph.
More formally, we have the following lemma.

Lemma 4.2: Let g be an LDS of G, then any LDS ¢’ (¢’ # g) in
G is still an LDS in G', where G’ is the residual graph of G after
removing g. a

Proof Sketch: Since all the LDSes in G are disjoint (Lemma 3.3)),
the LDS ¢’ of G is a subgraph of G’. Therefore, to prove the
lemma, it is sufficient to show that g’ is a maximal density(g’)-
compact subgraph in G’. This is true because g’ is a maximal
density(g’)-compact subgraph in G, and G’ is a subgraph of G.
Thus ¢ is also a maximal density(g’)-compact subgraph in G’. O

Revisiting the Greedy Approach. By Lemma , we can deter-
mine the top-1 LDS in G by computing a densest subgraph compo-
nent using the Goldberg’s algorithm (Algorithm[I). By Lemmaf.2]
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we know that after removing an LDS, all the other LDSes in the
original graph G are still LDSes in the residual graph G’. There-
fore, in order to compute all LDSes of graph G, we need to re-
visit the greedy approach introduced in Section[3} which computes
a densest subgraph component of the graph, removes it, and then
computes all LDSes of the residual graph using the same procedure
recursively until all nodes of the graph are removed. Lemma
and Lemma [4.2] ensure that such a greedy approach will not miss
any LDS. However, as analyzed in Section[3] some results produced
by the greedy approach may not be desirable. This indicates that
the above greedy approach may introduce false positive results.

The reason for the greedy approach to introduce such false pos-
itive results is that, although any LDS ¢’ in the original graph G is
still an LDS in the residual graph G’ after removing an LDS from
G (Lemma, the converse may not be true, i.e., an LDS ¢’ in the
residual graph G’ may not be an LDS in the original graph G. Let
us consider an example. For the graph G shown in Fig.[I] by ap-
plying the greedy approach that iteratively invokes the Goldberg’s
algorithm, we first compute the subgraph G|, which is the top-1
LDS in G by Lemma Next, if we remove G|g from G and
compute a densest subgraph component on the residual graph. We
can get the second subgraph Gi. Obviously, G| is an LDS in the
residual graph but not an LDS in the original graph G. We con-
tinue the same procedure: removing G and computing a densest
subgraph component on the residual graph, we can find the third
subgraph Ggy, which is the second LDS in the original graph G.
This example indicates that, in order to compute the correct top-k
LDSes, an additional verification procedure to determine whether
a result is false positive needs to be applied after each subgraph is
generated in the greedy approach.

Detecting False Positives. In order to verify whether a subgraph g
is an LDS in GG, we need to follow Deﬁnitonto check whether g
is a maximal density(g)-compact subgraph in G, which is nontriv-
ial. Fortunately, after exploring the properties of the result returned
by the TryDensity procedure in Algorithm [I} we can derive the
following lemma, which can be used for LDS verification.

Lemma 4.3: If G contains maximal p-compact subgraphs, then the
result returned by the procedure TryDensity(G, p—1/|V(G)|?) is
the set of all maximal p-compact subgraphs in G. a

Proof Sketch: It is easy to prove that any two maximal p-compact
subgraphs are disjoint, since if not we can combine the two sub-
graphs to form a larger p-compact subgraph. Let GG; the union of
all maximal p-compact subgraphs in G, and let G2 be the subgraph
returned by TryDensity(G, p — 1/|V(G)|?). By Lemma[2.2} G-
maximizes |E(G2)| — p X |V (G2)], and it is the largest subgraph
with maximum |E(G2)| — p X [V (G2)|. Now we prove that Gy
and G2 are the same.

(1) We prove that Gz is a subgraph of G1. To do this, it is sufficient
to prove that each connected component g2 of the graph G is p-
compact. Suppose to the contrary that a connected component g»
of G2 is not p-compact, then there exists a subset S C V(g2)
such that removing S will result in removing < p X |S| edges
from g>. Let gy be the graph after removing nodes S from go; we
have [E(g2)| — [E(g)| < p x 5] = p x (IV(g2)] — |V (g2)]).
Therefore, | E(g2)| — p x |V (g2)| < |E(gb)| — p x [V (g5)]. As a
result, replacing g by its subgraph g5 in G2 will enlarge the value
of |E(G2)| — p x |[V(G2)|. This contradicts the condition that G
has the maximum |E(G2)| — p x |V (G2)|.

(2) We prove that G1 is a subgraph of G2. Suppose to the con-

trary that G1 is not a subgraph of G2, then according to (1), we
can derive that V(G2) C V(G:1). Let S = V(G1) \ V(G2),




Algorithm 2 LDS(graph G, integer k)

Algorithm 3 Prune(subgraph G’, graph G)

l: G+ G;

2: fori = 1to k do

find < false;

while not find and G’ # @ do
g < any connected component of Densest(G”);
G’ < the residual graph of G after deleting g;
if Verify(g, G) then { find < true; output g; }

® ANk

. Procedure Verify(subgraph g, graph G)
9: g’ « TryDensity(G, density(g) — 1/|V (G)|?);
10: return g is a connected component in g’;

then S # . Since G is the union of all maximal p-compact sub-
graphs, removing S from G will result in removing > p X |S|
edges from G. In other words, |[E(G1)| — |E(Gz|) > p x |S] =
p X ([V(G1)| — |V(G2)]). Therefore, |E(G1)| — p x |V(G1)| >
|E(G2)|—px|V(G2)|. As aresult, enlarging G to G will not de-
crease | E(G2)| — p X |V (G2)|. This contradicts the condition that
G2 is the largest subgraph with maximum |E(G2)| — p X |V (G2)|.
O

According to (1) and (2), the lemma is proved.

The Algorithm. Armed with LemmaEE} after we compute the
densest subgraph g in each iteration of the above greedy algorithm,
we can invoke TryDensity(G, density(g) — 1/|V(G)[?) to ver-
ify whether ¢ is a maximal density(g)-compact subgraph in G by
checking whether g is a connected component of the subgraph re-
turned by TryDensity(G, density(g) — 1/|V(G)|?). If so, g must
be an LDS in G (by definition); otherwise it is a false positive result.
It is worth mentioning that the verification procedure is executed on
the original graph G rather than the residual graph. The detailed de-
scription of our algorithm is outlined in Algorithm 2] In the worst
case, our algorithm invokes the Goldberg’s algorithm (line 5) and
the verification procedure (line 7) at most O(n) times, thus the time
complexity of our algorithm is O(m -n - (m+n) -log® n) by using
the Sleator and Tarjan’s maximal flow algorithm [19]. Note that
in line 5, instead of using the Goldberg’s algorithm, we can adopt
any other algorithm such as [22] for densest subgraph computation.
Clearly, this basic algorithm is costly, and thus cannot be used for
large graphs. Below, we propose a practical optimized algorithm
with several effective pruning techniques to handle large graphs.

4.2 The Optimized Algorithm

Our optimized algorithm involves three nontrivial optimization
techniques, namely, pruning invalid nodes, optimizing Densest(G)
computation, and optimizing LDS verification. Below, we first de-
tail all these techniques, and then present our optimized algorithm.

4.2.1 Pruning Invalid Nodes

We first define the invalid node as follows.
Definition 4.1: (Invalid Node) A node v in a graph G is invalid if
and only if there does not exist an LDS that contains v. a

Then, we prove that after deleting the invalid nodes, the LDSes
in the original graph are still LDSes in the residual graph.

Lemma 4.4: Let v be an invalid node in G, then after removing v
from G, any LDS in G is still an LDS in the residual graph. a

Proof Sketch: The proof is similar to the proof of Lemmaf2] O

By Lemma[4.4] we can prune invalid nodes to reduce the size of
the graph, since we can operate on the residual graph without miss-
ing any LDS. Moreover, after pruning invalid nodes, the graph can
be divided into several smaller connected graphs each of which can
be handled separately. Here, similar to Algorithm [2] we still need
a verification procedure after computing an LDS from the residual
graph by removing the invalid nodes. The remaining issue is how
to determine the invalid nodes efficiently. Below, we propose two
effective pruning rules to identify the invalid nodes.
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1: Compute core(v, G') forallv € V(G); Sinvaiid +— 0;
2: forallv € V(G') do
3: p(v) « core(v, G)/2;

4:  p(v) < min{p(v), core(v, G')};

5: forallv € V(G’) do

6:  ifp(v) < p(v) then Sinaiia <+ Sinvaia U{v}:
7. if Ju e N(v,G)s.t. p(v) < p(u) then

8: Sinvalid <= Sinvalid U{v};

9: G+ the residual subgraph of G’ after removing Sinalid-
10: return G;

Pruning Rules. We define p(v) as any p such that there exists a
p-compact subgraph g of G that contains v. We also define p(v) as
follows: if there is an LDS g in G that contains v, then p(v) is an
upper bound of density(g); otherwise, p(v) can be any nonnegative
real value. By these definitions, when v is contained in an LDS g,
p(v) and p(v) can be deemed as the lower and upper bound of the
density of g respectively. The pruning rules are detailed below.

Lemma 4.5: (Pruning Rules) For any node v € V(G), v is invalid
if either of the following two conditions is satisfied:
(Rule-1): p(v) < p(v);

(Rule-2): there is a u € N (v, G) with p(v) < p(u).

Proof Sketch: First, if a node v meets rule-1, then it clearly is an in-
valid node, as its upper bound is smaller than its lower bound. Sec-
ond, for rule-2, we need to show that if p(v) < p(u), then v cannot
be contained in any LDS in G. Suppose, to the contrary, that there
is an LDS g containing v, then we have density(g) < p(v) < p(u).
Since there exists a p(u)-compact subgraph g’ that contains u, and
w and v are adjacent in G, then by computing the subgraph induced
by V(9) UV (¢’), we will obtain a larger density(g)-compact sub-
graph that contains g. Since g is an LDS, g must be the maximal
density(g)-compact subgraph, which is a contradiction. a

O

Computing 5(v) and p(v). According to Lemma we can de-

termine whether a node v is invalid based on p(v) and p(v). The
remaining problem is to efficiently compute p(v) and p(v) for any
node v. The following two lemmas can be applied to achieve this
goal. One is to compute p(v) and the other is to compute p(v).

Lemma 4.6: An r-core subgraph is 5-compact. a

Proof Sketch: Let g be an r-core subgraph. Clearly, each node in
g has degree at least r. If we delete any subset of nodes S C V' (g),
then we will delete at least § x |S| edges, because each edge is
deleted at most twice. Thus, by definition, g is 5-compact. o

Lemma [4.6| indicates that for any v € V(G), p(v) can be as-
signed as core(v, G)/2, because there is a core(v, G)/2-compact
subgraph of G that contains v.

Lemma 4.7: If g is an LDS of G, then core(v,G) > density(g)
forallv € V(g). O
Proof Sketch: The lemma can be immediately obtained from the
result of Lemma[3.2] O

Based on Lemma[d.7] for any node v € V(G), we can set p(v)
to be core(v, G). The reason is that if there is an LDS g contain-
ing v, then core(v, G) is an upper bound of density(g). If v is an
invalid node, we can still set p(v) to be core(v, G), because by our
definition, p(v) can be any nonnegative real value in such a case.
Note that Lemma[£.3] Lemma[£.6] and Lemma [£.7]still hold if we
want to compute the LDSes of a subgraph G’ of G.

The Pruning Algorithm. Equipped with Lemma Lemma
and Lemma - we design an algorithm to prune all the invalid
nodes in a subgraph G’ of G, which is detailed in Algorithm
The algorithm first computes p(v) and p(v) for each v € V(G)



Algorithm 4 Densest* (graph G)

Algorithm 5 Verify* (p-compact subgraph g with density p, graph G)

1: Compute pmax by using the 1/2-approximation greedy algorithm [6];

2: Compute the [ pmax |-core of G, denoted by G;

Dt 0

: for all connected component g of G’ do

g’ «+ Densest(g);

if g* = 0 or density(g’) > density(g*) then g* «+ g’;

else if g* # 0 and density(g’) = density(g*) then g* + ¢g* U ¢’;
1 p* < density(g”);

» p(v) < max{p(v), p*} forallv € V(g");

10: p(v) + min{p(v), p* — W} forallv € V(G)\ V(g");

11: return g*;

based on Lemma [4.6) and Lemma [4.7] respectively (lines 2-4), and
then applies the pruning rules in Lemma[4.5]to prune invalid nodes
in G’ (lines 5-9). Note that p(v) only needs to be initialized once
because it is independent of G’. We prune invalid nodes in a sub-
graph G’ rather than G because Algorithm [3|can be applied for
multiple times, i.e., each time after updating G to its residual graph
G’ by removing the identified LDSes and invalid nodes, we can
invoke Prune(G’, G) to compute and prune new invalid nodes.

4.2.2  Optimizing Densest(G) Computation

In order to show how to reduce the computational cost in the
Densest(G) procedure in Algorithm we first give an upper bound
for the density of the densest subgraph.

Lemma 4.8: If g is the maximal densest subgraph of G, then
core(v, G) > density(g) for allv € V(g). O

Proof Sketch: Since each connected component of g is an LDS in
G, the lemma immediately holds by Lemma[4.7] O

Lemmal4.8|indicates that if we can compute a lower bound pmax
for the density of the densest subgraph of G, then all nodes v €
V(G) with core(v, G) < pmax cannot be contained in the maximal
densest subgraph g of G. The rationality is that if a node v €
V(G) with core(v, G) < pmax is contained in the maximal densest
subgraph g, then we have core(v, G) < pmax < density(g), which
contradicts Lemma To derive the lower bound pmax, We can
make use of the well-known linear-time greedy algorithm proposed
by Asahiro et al. [6] which produces a 1/2-approximation densest
subgraph [13]]. Below, we show that if a node is not contained in
the maximal densest subgraph, then we can delete it from G when
computing the maximal densest subgraph of G.

Lemma 4.9: Let g be the maximal densest subgraph of G, for any
node v € V(G), ifv ¢ V(g), then g is still the maximal densest
subgraph in the residual graph G’ after removing v from G. a

Proof Sketch: Since each connected component of g is an LDS in
G, the lemma immediately holds by Lemma[4.4] a

The Densest™ Algorithm. Based on Lemma m and Lemma
we can remove the nodes whose core numbers are smaller than the
lower bound pmax, and then compute the maximal densest subgraph
in the residual graph. In other words, we can compute the maximal
densest subgraph in the [ pmax ]-core of G rather than in the original
graph G. Note that the [pmax |-core of G is typically much smaller
than the original graph G, thus our optimized algorithm can sig-
nificantly reduce the computational cost. The detailed algorithm is
depicted in Algorithm We first compute the lower bound pmax by
using the linear-time 1/2-approximation greedy algorithm (line 1),
and then compute the [pmax |-core G’ (line 2). Subsequently, we
compute the maximal densest subgraph g* in G’ by invoking Gold-
berg’s algorithm (lines 4-7). Here, since some nodes are removed
from G, G can be divided into several smaller connected compo-
nents, each of which can be handled individually. Moreover, based
on density(g™), we can update the lower bound p(v) for each node
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1: G' +~ Geore= [p] (V(g))’
2: if there does not exist an already computed LDS g’ with V' (¢’) C V(G’) and
density(g’) > p then
return true;
4: return Verify(g, G');

v € V(g") (line 9), and refine the upper bound 5(v) for each node
v € V(G)\ V(g*) (line 10). Finally, the algorithm outputs the
maximal densest subgraph g* (line 11). The correctness of Algo-
rithm [ can be guaranteed by Lemma[4.8 and Lemma[4.9]

4.2.3 Optimizing LDS Verification

We explore possible ways to optimize the procedure of LDS ver-
ification. First, we show that any p-compact subgraph is contained
in a connected component of [p]-core.

Lemma 4.10: If g is a p-compact subgraph of G, then g is con-
tained in a connected component of the [ p]-core of G. a

Proof Sketch: The proof can be easily obtained by definition. O

For a p-compact subgraph g, let Geore=1,1(V (g)) be the con-
nected component of the [p]-core of G that includes all the nodes

in V(9). Geore=[p1(V(9)) exists by Lemma [4.10] We prove that
any LDS g in G is an LDS in Gcore—1,7(V (9)), and vice versa.

Lemma 4.11: For a p-compact subgraph g of G, g is an LDS in G
if and only if g is an LDS in Geore—1,1(V (9))- |

Proof Sketch: First, if g is an LDS in G, by Lemma[4.10] g is con-
tained in Geore=[,1(V (g)). It is easy to prove that g is an LDS in
Geore=1p1(V (9))- Second, if g is an LDS in Gcore=1,1(V (g)), then
g is a maximal density(g)-compact subgraph in Gegre—r,1(V (9))-
Since Geore=1,1(V (g)) is a connected component of the [p]-core
of G and p < density(g), there is no supergraph of g larger than g
in G that is density(g)-compact. Hence, g is a maximal density(g)-
compact subgraph in G, and thereby g is an LDS in G. a

Based on Lemma[.T1] if subgraph g is p-compact, we can verify
whether g is an LDS in Gcore=[,71(V (g)), rather than in the original
graph G. The subgraph Geore—1,1(V (g)) is usually much smaller
than the original graph G, thus the new verification algorithm will
be much more efficient than the basic verification algorithm used
in Algorithm 2] Moreover, based on Lemma[4.T|and Lemma[4.11]
we can derive the following two lemmas, which can be applied to
further optimize the verification algorithm.

Lemma 4.12: If a p-compact subgraph g of G is a densest sub-
graph component of Geore=1,1(V (9)), then g isan LDS in G. O

Proof Sketch: The proof can be immediately obtained by Lemmad.]
and Lemma[d.11] ]

Lemma 4.13: For any p-compact subgraph g with density p, if
there does not exist an LDS g in G with density(g') > p that is
contained in Geore=1,1(V(g)), then g is a densest subgraph com-
ponent Ochore: [p] (V(g)) O
Proof Sketch: Suppose to the contrary that, g is not a densest
subgraph component of Geore=1,1(V (g)), then by Lemma and
Lemma any densest subgraph component in Geore—1,1(V (9)),
denoted by ¢g*, which is denser than g, must be an LDS in graph
Geore=1p1(V (9))- This clearly contradicts our condition. O

The Verify* Algorithm. The optimized LDS verification algorithm
Verify™ improves the verification process in two ways. First, by
Lemma [£.T1] the verification process for a p-compact subgraph g
can be confined on the subgraph Gore—1,1(V (g)) rather than on
the original graph G. Second, by Lemmad.12and Lemma[d.13] we
can further optimize the verification algorithm by checking whether
there is an already computed LDS ¢’ contained in Gegre=1,7(V (9))




Algorithm 6 LDS* (graph G, integer k)
1: p(v) <= 0,p(v) <= +ocforallv € V(G); H + 0;

2: G’ + Prune(G, G);

3: for all connected component g of G’ do

4 p <+ max,ev(g){P(v)}; H.Push(g, p, false);

5: fori = 1to k do

6: find < false;

7:  while not find and H # 0 do

8: (g, p, exact) < H.Pop();

9: if exact then

10: if Verify* (g, G) then { find < true; output g; }
11: continue;

12: g* < any connected component of Densest* (g);
13: H.Push(g*, density(g™*), true);

14: G’ < the residual graph of g after deleting g*;

15: G’ « Prune(G’, G);

16: for all connected component g of G’ do

17: p + max,cv(q){p(v)}; H.Push(g, p, false);

that is denser than g. Recall that Algorithm[2]outputs the LDSes ac-
cording to the non-decreasing order of density. Thus, when we ver-
ify a p-compact subgraph g with density p, if no denser LDS con-
tained in Geore=[,1 (V' (9)) is already computed, then g is a densest
subgraph component of Gegre=[,1(V (g)) (by Lemma , and
thus g must be an LDS in G (by Lemma [12). The detailed de-
scription of the Verify™ algorithm is outlined in Algorithm |5} To
verify a p-compact subgraph g with density p, the algorithm first
computes Geore=[,7(V (g)) (line 1). Then, the algorithm checks
whether there is an already computed LDS with density larger than
pin Geore—1p1(V (g)) (line 2). If there is no such an LDS, then the
algorithm can directly return true, as g must be an LDS in G by
Lemma [£.12] and Lemma [.13] (line 3). Otherwise, the algorithm
needs to verify g in Geore—[p1(V (9)) by Lemma(line 4).

4.2.4 The LDS* Algorithm

By combining all the pruning techniques, we can derive the op-
timized LDS discovery algorithm, called the LDS™ algorithm. We
outline the LDS™ algorithm in Algorithm@ Specifically, the algo-
rithm maintains a priority queue H to compute the top-k LDSes.
Each entry in H is a triplet that consists of three different elements:
g, p, and a boolean variable. Here g denotes a subgraph, p denotes
the priority of g, which is an upper bound for the density of any
LDS contained in g, and the boolean variable is used to determine
whether g is a p-compact subgraph with density p. For each sub-
graph g, p can be initialized to be the maximal value of 5(v) over
all v € V(g), because such a maximal value must be an upper
bound for the density of any LDS contained in g.

Initially, Algorithm|6[sets p(v) to be 0 and 5(v) to be 4o for ev-
ery node v in G (line T). Then, the algorithm invokes Algorithm[3]
to prune the invalid nodes, resulting in a residual graph G’ (line 2).
Subsequently, the algorithm pushes all the connected components
of G’ into H (lines 3-4). After that, the algorithm finds the top-k
LDSes in k iterations (lines 5-17). In each iteration, it processes
the popped entry from #, denoted by (g, p, exact) (line 8). If g is a
p-compact subgraph with density p (exact is true), then it invokes
AlgorithmE]to verify whether it is an LDS, and if so, the algorithm
outputs it and continues to the next iteration (lines 9-11). If exact is
false, then the algorithm computes the maximal densest subgraph
of g using Algorithm@(line 12). Since each densest subgraph com-
ponent g* of g must be density(g*)-compact, the algorithm ran-
domly selects one densest subgraph component g* of g and pushes
(g*,density(g*), true) into the priority queue H (line 13). Note
that here the priority of g* is set to be density(g™) and the boolean
variable is set to be true, because ¢ is a density(g*)-compact sub-
graph with density density(¢™). After that, the algorithm obtains
the residual graph G’ by deleting subgraph g* (line 14). Then,
it invokes Algorithm [3|to prune the invalid nodes in G’ (line 15),
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[ Dataset | n [ m [ dmax [ density |

Indochina 7,414,866 194,109,311 256,425 26.18
UK 39,459,925 936,364,282 1,776,858 23.73
Livejournal 5,363,260 79,023,142 19,432 14.73
Patent 3,774,768 16,518,947 793 4.38
Arabic 22,744,080 639,999,458 575,628 28.14
WebBase 118,142,155 1,019,903,190 816,127 8.63
Coauthor 5,411 17,477 96 3.23

Table 1: Datasets
and also pushes each connected component of G’ into the priority

queue H (lines 16-17). The correctness of the algorithm can be
guaranteed by the results shown in Section[f.2.1] [#2.2] and[#2.3]

5. EXPERIMENTS

In this section, we show our experimental results. All of our ex-
periments were conducted on a machine with an Intel Xeon 3.4GHz
CPU and 32GB main memory running 64-bit Red Had Linux.

Datasets. We use 7 real-world graphs with different graph prop-
erties for testing. The detailed statistics of all the 7 datasets are
shown in Table |1} where d;,q. is the maximum degree of nodes in
the graph. Among all the graphs, Livejournal is a social network of
a virtual-community social site, Patent is a citation network among
US patents, Coauthor is a co-author network, and others are web
graphs. Indochina, UK, Livejournal, Arabic, and WebBase are
downloaded from LAW (http://law.di.unimi.it/), Patent is down-
loaded from Konect (http://konect.uni-koblenz.de/), and Coauthor
is obtained from ArnetMiner (http://arnetminer.org). Due to lack of
space, for effectiveness testing, we use four graphs with different
statistics: Arabic (dense web graph), WebBase (sparse web graph),
Livejournal (social network), and Patent (citation network). For
efficiency testing, we use the four largest graphs among all the
datasets listed in Table[I] Coauthor is used for a case study.

Algorithms. For effectiveness testing, we compare the dense sub-
graphs identified by our LDS model with the dense subgraphs com-
puted by [37]], which adopts the greedy approach to identify top-k
dense subgraphs, and is the state-of-the-art algorithm for dense sub-
graph identification. [37]] aims to find dense subgraphs called op-
timal quasi-cliques which are a set of clique-like dense subgraphs.
We adopt the local search optimization strategy introduced in [37]]
to find each optimal quasi-clique. We denote our algorithm as LDS
and the greedy approach introduced in [37] as QC. For QC, all
parameters are set to their default values suggested in [37].

For efficiency testing, we compare two algorithms, denoted as
LDS and LDS*. LDS follows the framework in Algorithm [2| by
replacing the Densest procedure at line 5 with Densest™ (Algo-
rithm EI), and replacing the Verify procedure at line 7 with Verify™
(Algorithm. The reason that we use Densest™ and Verify* is that,
without adopting the two optimized algorithms, we cannot output
aresult in a reasonable time for any of the datasets due to the high
time complexity of the algorithm. LDS™ follows Algorithm |§|with
all optimization strategies involved. All algorithms are in-memory
algorithms and are implemented in C++.

Quality Measures. We adopt the following four quality measures
for effectiveness testing:

e Density p. The typical density definition shown in Eq.[T]

e Relative Density p,. Relative density is a popular graph cluster-
fitness measure that takes both the inter and intra edges of a
subgraph into consideration [33]]. Intuitively, a subgraph with
high relative density indicates that the density of the subgraph is
high and the density of its nearby region is relatively low. The
relative density is formally defined as follows:

|E(9)|

P99 = TET T 1 2(e O]

(@)



where E'(g,G) = {(u,v)|(u,v) € E(G),u € V(g),v ¢
V(g)} is the set of inter-edges for subgraph g in G.

e Edge Density p.. Edge density is the ratio of the number of
edges in a graph to the number of edges in a complete graph
with the same set of nodes, which is defined as:

o) = — X EQ)
[E(9)] x (IE(9)] — 1)
Note that the edge density can reflect the density of a subgraph;
however, edge density alone cannot be a good density measure.
As an example, a subgraph of a single edge has edge density 1,
but it is not a dense subgraph.

3

e Diameter. The diameter of a graph is the longest distance of all
pairs of nodes in the graph, where the distance of two nodes is
the minimum number of hops to reach from one node to another.

In our effectiveness testing, for each dataset, we compute the
top-30 dense subgraphs by both LDS and QC, and draw the statis-
tics for each of the above quality measures with respect to the size
(number of nodes) of each subgraph. In the following, we show
the effectiveness testings of the four quality measures in Exp-1 to
Exp-4 respectively, report the result of efficiency testing in Exp-5,
and perform a case study in Exp-6.
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Figure 2: Density Testing

Exp-1: Density Testing. The results for density testing for the four
datasets are shown in Fig. 2| (a)-(d) respectively. In Arabic (Fig.
(a)), we observe that LDS tends to find large dense subgraphs and
QC tends to find small subgraphs with relatively lower density. For
example, the top-1 subgraph reported by LDS has 3,250 nodes with
density 1,624.5, whereas the top-1 subgraph reported by QC has
648 nodes with density 323.1. The results in WebBase (Fig.
(b)) are similar to those in Arabic. In Patent (Fig.[2](c)), the sub-
graphs reported by LDS and QC have similar density range. For
the same density, LDS tends to report larger subgraphs than QC
to represent the corresponding local dense regions. In Livejournal
(Fig.[2](d)), the subgraphs reported by LDS have a wider size range
(from 75 to 1051) and a wider density range (from 35.6 to 244.2),
whereas the subgraphs reported by QC have a relatively narrower
size range (from 221 to 820) and a relatively narrower density range
(from 99.8 to 238.9). This is because a social network usually has a
small number of large dense regions. In such a case, LDS tends to
identify both large and small subgraphs to represent different local
dense regions, whereas QC tends to find dense subgraphs within a
certain large dense region in the graph.

Exp-2: Relative Density Testing. In this experiment, we test the
relative density and show our testing results in Fig. [3] In Arabic
(Fig.[3] (a)), we observe that LDS tends to identify large subgraphs
with higher relative density, whereas QC tends to find small sub-
graphs with lower relative density. In WebBase (Fig. |3| (b)), most
of the subgraphs reported by LDS have a relative density higher
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Figure 3: Relative Density Testing

than 0.9, while almost half of the subgraphs reported by QC have
a relative density lower than 0.5. This indicates that LDS does
not only consider the density of each identified subgraph, but also
tends to distinguish each subgraph in its local region. The results
for Patent are shown in Fig. [3| (c). For the same subgraph size,
the subgraphs reported by LDS usually have higher relative density
than the subgraphs reported by QC. In Livejournal (Fig. [3| (d)),
although LDS identifies a lot of smaller subgraphs than QC, the
subgraphs reported by LDS have higher relative density than the
subgraphs returned by QC on average. Such a result further con-
firms our observation in Exp-1, that is, LDS tends to identify both
large and small subgraphs to represent different local dense regions,
whereas QC tends to find dense subgraphs within a certain large
dense region in the graph. Here, it is worth noting that in Arabic,
WebBase, and Patent, the subgraphs identified by QC have a small
size which may result in the low relative density. In Livejournal,
the subgraphs identified by LDS also have a small size. However,
the relative density of those subgraphs is high. This shows that LDS
can indeed find the representative dense subgraphs of the graph.
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Figure 4: Edge Density Testing
Exp-3: Edge Density Testing. The results for edge density testing
are shown in Fig.[4] In the Arabic dataset (Fig. [d](a)), we observe
that both LDS and QC can identify a large number of subgraphs
with high edge density. For the same edge density, the size of the
subgraphs reported by LDS is usually larger than the size of the
subgraphs reported by QC. In addition, LDS can also report some
large subgraphs with relatively lower edge density. This indicates
that the corresponding local regions do not contain large clique-
like subgraphs. Therefore, although the edge density of the sub-
graphs is not high, the reported subgraphs are also representative in
their corresponding local regions. The testing results for WebBase
(Fig. [ (b)) are similar to those for Arabic. In Fig. ] (c), we can
see that, in the Patent dataset, the edge density for the subgraphs
identified by both LDS and QC is usually no larger than 0.6. The
subgraphs reported by LDS have a wider range of size and edge
density to represent different local dense regions of the graph. In




the Livejournal dataset (Fig. E|(d)), LDS can find small subgraphs
with high edge density and large subgraphs with relatively lower
edge density to represent different local regions of the graph, while
QC usually outputs subgraphs with medium size and edge density.
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Exp-4: Diameter Testing. In this experiment, we test the diame-
ter of the subgraphs returned by LDS and QC. The experimental
results are shown in Fig. El For the Arabic dataset (Fig. E] (a)), the
diameters of the subgraphs returned by both LDS and QC are no
larger than 3. Although the size of the subgraphs returned by LDS
is larger than the size of those returned by QC, the diameters of
the subgraphs returned by the two algorithms are similar. We have
similar observation on the other three datasets WebBase (Fig.
(b)), Patent (Fig. [j] (¢)), and Livejournal (Fig. [3] (d)). Compar-
ing the results of diameter testing with the results of edge density
testing shown in Fig. E it is worth noting that although LDS can
report subgraphs with relatively lower edge density than QC, the
diameters of the subgraphs identified by LDS are as small as the
diameters of those identified by QC. This indicates that the nodes
in the subgraphs returned by LDS are tightly connected.
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Exp-5: Efficiency Testing. In this experiment, we test the effi-
ciency of the two algorithms LDS and LDS*. We vary k from 5
to 50 and report the time to compute the top-k results for LDS and
LDS*. The testing results for the four datasets are shown in Fig. @
For all the four datasets, when k increases, the processing time for
both LDS and LDS™ increases. Both algorithms consume a cer-
tain amount of time to report the first result in order to compute the
core numbers of all nodes and initialize some variables. LDS™ out-
performs LDS in all testing cases. The gap of the processing time
between LDS and LDS* increases when k increases. The reason is
that LDS does not compute and prune the invalid nodes. There-
fore, to output each result, it needs to search globally from the
whole graph by excluding the reported subgraphs. LDS™ prunes
the invalid nodes using two pruning rules and after each result is
reported, it can be used to prune more invalid nodes. Furthermore,
after removing invalid nodes, the whole graph can be divided into
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several smaller connected graphs each of which can be handled in-
dividually. Therefore, the search space for LDS™ is largely reduced
compared to LDS, especially when k is large. When k reaches 50,
LDS* is 4.4, 19.7, 10.6, and 15.6 times faster than LDS for the
Indochina (Fig. [f] (a)), Arabic (Fig. [f] (b)), UK (Fig.[f] (c)), and
WebBase (Fig. |§|(d)) datasets, respectively.

| & || LDS I Greedy I QC |

[ n [ p Jarea ]| n [ p Jarea[[ n [ p [ area |
1 45 | 146 DS 45 14.6 | DS 25 | 11.6 IR
2 25 | 11.6 IR 25 11.6 IR 45 | 146 | DS
3 28 10.4 BN 28 10.4 BN 28 104 BN
4 70 | 74 SW 70 7.4 SW 138 7.2 DS
5 28 5.1 DM 18 7.2 DS 23 6.7 SW
6 74 | 4.6 ML 247 6.0 DS 9 4.0 SW

Table 2: Case Study on Coauthor Dataset

Exp-6: Case Study. In this experiment, we perform a case study
on the Coauthor dataset. The aim of this case study is to show
that the subgraphs identified by LDS can indeed represent differ-
ent dense regions of the whole graph. Coauthor is a dataset that
records the coauthor relationship of researchers in different research
areas including Database Systems (DS), Information Retrieval (IR),
Machine Learning (ML), Data Mining (DM), Bayesian Networks
(BN), and Semantic Web (SW). Each author in the network is la-
beled with the main research areas of the author. A subgraph be-
longs to a certain research area if all the authors (nodes) in the
subgraph are labelled with the corresponding research area.

In addition to our LDS algorithm and the QC algorithm, we also
report the subgraphs returned by the Greedy algorithm, which is to
recursively identify the densest subgraph in the residual graph by
deleting the identified dense subgraphs in the previous iterations.
For each algorithm, we report the top-6 subgraphs, and show the
number of nodes n, density p, and the research area for each re-
turned subgraph. The experimental results are depicted in Table 2}

From the experimental results, we can see that the top-6 sub-
graphs returned by LDS belong to 6 different research areas, i.e.,
each returned subgraph can be used to represent the densest re-
search community in its corresponding research area. In compari-
son, Greedy and QC only report the subgraphs in 4 research areas
DS, IR, BN, and SW, with DM and ML missing. For Greedy, it
finds two additional subgraphs in the DS area, one is small with
18 nodes and density 7.2, and the other is large with 247 nodes
and density 6.0. Both subgraphs are subsumed by a denser sub-
graph that is in the same dense region with the densest subgraph in
the DS area (the top-1 subgraph reported by LDS). Therefore, they
cannot be used to represent the local dense regions. For QC, it finds
an additional subgraph in the DS area and an addition subgraph in
the SW area. For the two subgraphs in the SW area reported by
QC, they have densities of 6.7 and 4.0 respectively. However, a
denser subgraph with density 7.4 (the fourth subgraph reported by
LDS) is not identified. Therefore, the subgraphs returned by LDS
are the best to represent local dense regions of the graph.

6. RELATED WORK

Densest Subgraph Discovery. The densest subgraph discovery
problem aims at finding the subgraph with maximal average de-
gree from a graph [25]. It is well known that this problem can
be solved in polynomial time by using the parametric flow tech-
nique [25| |22]. Moreover, as shown by Charikar [13], a linear-
time greedy algorithm proposed by Asashiro et al. [|6] can obtain
a 1/2-approximation densest subgraph. Such a greedy algorithm
is recently extended to MapReduce and streaming model by Bah-
mani et al. [7]. However, when we restrict the size of the densest




subgraph, the problem becomes NP-hard [5]]. Several interesting
variants of the size-constrained densest subgraph as well as effi-
cient approximation algorithms are discussed in [3}27]. More re-
cently, Tsourakakis et al. [37] propose another interesting variant
of the densest subgraph model, termed optimal quasi-clique, based
on a new definition of the density function, which can produce a
subgraph with higher quality than the densest subgraph. Similar
to the size-constrained densest subgraph, the optimal quasi-clique
discovery problem is also NP-hard [36]. Unlike all these studies, in
this work, we propose a new densest subgraph model, called locally
densest subgraph (LDS). Based on our model, we are able to iden-
tify all the locally densest regions of a graph in polynomial time,
which cannot be found by the previous densest subgraph models.
We also propose a practical algorithm for finding the top-k locally
densest subgraphs from a large graph.

Cohesive Subgraph Mining. Cohesive subgraph is an important
concept in social network analysis and graph mining [39]]. The co-
hesive subgraph mining focuses on enumerating all the cohesive
subgraphs from a graph. Unlike the densest subgraph, which is
defined based on the density, the cohesive subgraph is typically de-
fined by a relaxation of clique model. In the literature, there are a
number of cohesive subgraph models [34} 16| 18| [39]. Notable ex-
amples include maximal clique [[16]], k-plex [39]], k-core [34,(9,[29]],
k-truss |18, 38|, and maximal k-edge connected subgraph [[12} 2]
For all these cohesive subgraph models, many practical algorithms
are proposed. For example, James et al. propose several 1/O effi-
cient algorithms for finding maximal clique [16]], k-core [[15]], and
k-truss [38] from a disk-resident graph. Chang et al. [12] propose
a linear-time algorithm for identifying maximal k-edge connected
subgraph from a large graph. Akiba et al. [2]] propose a differ-
ent linear-time algorithm for finding the maximal k-edge connected
subgraph based on a random edge contraction technique.

Other Models. In addition to the above two categories, there are
related work on other models based on various graph properties
(e.g., [I1}24,130]) and graph applications (e.g., [35} 8, /10]). How-
ever, in this paper, we only focus on the density-based model, which
is a key primitive in a variety of applications as shown Section[T}

7. CONCLUSION

In this paper, we study the problem of discovering the top-k lo-
cally densest subgraphs (LDSes) in a graph, which can be used
to identify the local dense regions of a graph, and can be applied
in a variety of application domains. We provide a parameter-free
definition of an LDS with several useful properties. We show that
the LDSes of a graph can be computed in polynomial time, and
propose three novel optimization strategies to improve the algo-
rithm. We conduct extensive experiments using seven real datasets
to demonstrate the effectiveness and efficiency of our approach.
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